Abstract
Very recently, in the 2011 version of the wien2k
code, the long-standing shortcoming of the codes based on density
functional theory, namely, its impossibility to account for the
experimental band-gap value of semiconductors, was overcome. The novelty
is the introduction of a new exchange and correlation potential, the
modified Becke-Johnson potential (mBJLDA). In this paper, we report our
detailed analysis of this recent work. We calculated using this code,
the band structure of 41 semiconductors and found an important
improvement in the overall agreement with experiment as Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)]
did before for a more reduced set of semiconductors. We find,
nevertheless, within this enhanced set, that the deviation from the
experimental gap value can reach even much more than 20% ,
in some cases. Furthermore, since there is no exchange and correlation
energy term from which the mBJLDA potential can be deduced, a direct
optimization procedure to get the lattice parameter in a consistent way
is not possible as in the usual theory. We analyze the consequences of
this problem. Furthermore we found that using the experimental lattice
parameter as input, surprisingly high deviations of the predicted
band-gap value from experiment occur. This is an odd result. A closer
look at the obtained band structures reveals that, in some cases,
important differences occur that might not be negligible. The overall
implementation of the calculation of the band structure of
semiconductors with the wien2k code using this
new potential is quite empirical, although it mimics well the results
obtained by other methods, such as the GW approximation, which give
better results and are theoretically well founded. We conclude that, in
spite of the very important improvement in the band-gap agreement with
experiment using the mBJLDA potential, there are issues that point to
the fact that this problem is not yet totally closed.
To download the article click on the link below:
0 Comments